Блог им. SciFi |Применение наивного байесовского классификатора на R для поиска закономерностей и прогнозирования

    • 09 мая 2016, 13:48
    • |
    • SciFi
  • Еще
В последнее время изучаю R и машинное обучение. 

Мои статьи про R, машинное обучение, количественный анализ

В этом посте я расскажу о том, как применить машинное обучение для поиска закономерностей и прогнозирования.

Использовал эту статью: Применение машинного обучения в трейдинге

Начнем с проверки того, работают ли тренды и как влияет день недели на направление движения цены. И если работают, насколько они смещают вероятность в нашу сторону. Применим для этого наивный байесовский классификатор. 

Теорема Байеса в теории вероятностей, как теорема Пифагора в геометрии.

Байесовская вероятность — это интерпретация понятия вероятности, используемая в байесовской теории. Вероятность определяется как степень уверенности в истинности суждения. Для определения степени уверенности в истинности суждения при получении новой информации в байесовской теории используется теорема Байеса. 

( Читать дальше )

Блог им. SciFi |Мои шаги в сторону машинного обучения на R и немного про Si, Brent

    • 15 апреля 2016, 21:14
    • |
    • SciFi
  • Еще

Копался в статьях по алготрейдингу, решил присмотреться в сторону машинного обучения. Но это в моем случае не про какой-то искусственный интеллект с нейросетями, в нейросети пока не хочу лезть, слишком сложно. Для начала хочу использовать простые алгоритмы для классификации и оценки хороших точек входа на основе обучения модели на истории.

Я исходил из того, как сам разрабатываю обычно торговую систему: ищу хорошие точки входа на истории и классифицирую их. Но так как человеческие возможности ограничены, использую только 3 таймфрейма и около 10 индикаторов в сумме. Кроме этого, история в точности никогда не повторяется и нужна какая-то более умная модель, которая не просто сравнивает индикаторы, как делают сейчас мои роботы, а дает оценку данной рыночной ситуации на основе всей совокупности индикаторов.

С помощью машинного обучения можно создать и обучить много моделей по разным алгоритмам, эта область уже хорошо развита (Logistic regression, Linear discriminate analysis, Stochastic gradient boosting, Decision trees, Support Vector Machine, KNN и другие). Можно быстро попробовать разные модели (Spot-checking algorithms). Модели могут работать вместе и делать предсказания. Можно улучшать точность моделей (Algorithm parameter tuning, Ensemble methods). Можно посчитать точность предсказаний по модели, обучив сначала модель на части выборки, а затем протестировав ее на другой части выборки (resampling). 

Как я понял, R для машинного обучения идеально подходит. Сделал первые шаги сегодня: cоздал модель по туториалу, которая определяет по размеру чашелистиков и лепестков растения ирис точный вид (всего 4 вида) какого-то одного растения(особи) на основе обучения по выборке из 500 других растений(особей). 

Код: 

# Скачивание и инициализация библиотек mlbench(используется для machine learning), caret (используется для нормализации данных)
install.packages("mlbench") 
library(mlbench)
install.packages("caret") 
library(caret)

# Краткая информация про базу данных iris
data(iris)
summary(iris)

# Определение тренировочной выборки
trainControl <- trainControl(method="cv", number=10)

# Оценка точности алгоритма Naive Bayes на данном dataset
fit <- train(Species~., data=iris, trControl=trainControl, method="nb")

# Вывод оценки точности
print(fit)

Сейчас я точно так же хочу сделать модель, которая на основе 30-300 хороших точек входа на истории определяет, насколько хороша данная пятиминутка для входа в лонг или шорт. 

Что скажете? Есть ли там грааль? Есть ли у кого-то опыт использования машинного обучения для торговли? Что посоветуете? 

Также представляю вашему вниманию грубую оценку того, на сколько в среднем ходят нефть Brent и Si за час и 1 день. Посчитал с использованием библиотеки rusquant на R. Также делюсь элементарным кодом. 

Я взял данные за последние 15 дней для BRK6 и 30 дней для SiM6. Затем посчитал доходности и их среднеквадратичное отклонение. Затем отклонение умножил на среднюю цену. 

Получилось:

Brent
за час: 0.25$
за день: 1.15$

Si
за час: 235 руб.
за день: 757 руб. 

Код на R: 

# Инициализация библиотеки rusquant (русская версия от quantmod, поддерживает все функции quantmod)
library(rusquant)

# Получение исторических данных с Финама
getSymbols("SiM6", from=Sys.Date()-30, src="Finam", period="day")

# Рисуем график, чтобы увидеть данные
candleChart(SIM6)

# Расчет доходностей встроенной функцией библиотеки rusquant (унаследована от quantmod)
rr <- OpCl(SIM6)

# Цены закрытия
p <- Cl(SIM6)

# Получение абсолютного значения среднеквадратичного отклонения доходности
sd(rr)*mean(p)

[1] 757.7013

# Аналогично для часовика
getSymbols("SiM6", from=Sys.Date()-30, src="Finam", period="hour")
candleChart(SIM6)
rr <- OpCl(SIM6)
p <- Cl(SIM6)
sd(rr)*mean(p)

[1] 234.9929

#Аналогично для BRK6. 

....все тэги
UPDONW
Новый дизайн